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Abstract. We study a lattice model of an interacting uniform self-avoiding star polymer with
f branches. A 1/d-expansion for the limiting reduced free energy is derived through order 1/d

for generalf and, forf = 3, to order 1/d2. The terms in the expansion are independent off

and agree term by term with the corresponding expansion for interacting self-avoiding walks. We
also present a miscellany of numerical results obtained by more conventional series and Monte
Carlo techniques. All our results, both past and present, support the conjecture that the limiting
reduced free energies off -stars, walks and polygons are identical for all values of the interaction
parameterβ.

1. Introduction

We consider a lattice model of a uniformf -star polymer with nearest-neighbour contact
interactions. Anf -star is a connected subgraph of the lattice with one vertex of degreef and
f vertices of degree one. Abranchis the sequence of edges connecting the vertex of degree
f to a vertex of degree 1. A star isuniform if each of thef branches has the same number of
edges. A nearest-neighbourcontactis a pair of vertices of the star which are one lattice space
apart but not joined by an edge of the star.

Let the number of uniformf -stars on ad-dimensional simple hypercubic lattice withn
edges in each branch and withk contacts besn(k; f ). Clearly,sn(k; 1) ≡ cn(k), the number
of self-avoiding walks withn edges andk contacts. Letpn(k) be the corresponding number of
self-avoiding polygons. We define the partition functions for interacting self-avoiding polygons
(ISAP), interacting self-avoiding walks (ISAW) and interacting uniformf -stars (ISAS-f ) by

Zon(β) =
∑
k

pn(k)e
βk (1.1)

Zn(β) =
∑
k

cn(k)e
βk (1.2)

and

Zn(β; f ) =
∑
k

sn(k; f )eβk (1.3)

respectively. The corresponding limiting reduced free energies (per edge) are then given by

κo(β) = lim
n→∞

1

n
logZon(β) (1.4)

κ(β) = lim
n→∞

1

n
logZn(β) (1.5)
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and

κf (β) = lim
n→∞

1

nf
logZn(β; f ). (1.6)

It has been proven rigorously (Tesiet al 1996a) thatκo(β) exists for all values of the
interaction parameterβ < ∞, and that the limiting free energies for polygons and walks are
identical forβ 6 0. In a previous paper (Yuet al 1997), we proved rigorously that, for values
of β 6 0, κf (β) exists andκf (β) = κ(β), independent off . Although Yuet al (1997) were
unable to construct rigorous proofs of the corresponding results forβ > 0, they presented
some numerical results for the triangular, square and simple cubic lattices which suggested
that the limiting free energies of ISAP, ISAW and ISAS-f are identical forall values ofβ, i.e.

κo(β) = κ(β) = κf (β) ∀β, f andd. (1.7)

If true, this result would imply that the heat capacity (essentially the second derivative of
the free energy), the locationβc of the collapse transition and the value of the corresponding
crossover exponentφ, were the same for all three polymer architectures. Indeed, it has been
speculated (Yuet al 1997, Bennett-Woodet al 1998) that these results extend to uniform
embeddings of graphs of every fixed homeomorphism type.

In this paper, we present some non-numerical evidence based upon 1/d-expansions (Fisher
and Gaunt 1964) that the limiting reduced free energy (per edge) of interacting uniformf -stars
is the same as for self-avoiding walksfor all values ofβ. We also derive exact enumeration
and Monte Carlo data which are used to estimate numericallyβc andφ for f -stars. These
estimates are compared with extant results for walks and polygons.

2. 1/d-expansions

The algebraic techniques we use in this section are similar to those described previously by
Peard and Gaunt (1995) for self-interacting (weakly embeddable) lattice animals.

We consider ad-dimensional simple hypercubic lattice with coordination numberq(=
σ + 1) given by

q = 2d = σ + 1. (2.1)

The partition function (1.3) is rewritten as

Z(d)n (x; f ) =
f n∑
`=1

∑
k>0

s
(n)
k,` (f )x

k

(
d

`

)
(2.2)

in which s(n)k,` (f ) is the number of uniformf -stars withk-contacts andn steps in each branch,
spanning aǹ-dimensional subspace. The Boltzmann factor in (1.3) is given by

x = eβ. (2.3)

With the aid of computer enumeration data, we have derived theZ(d)n (x; f ) through orders
n = 4, 3, 2 and 2 forf = 3, 4, 5 and 6, respectively. The results which, it should be
emphasized, holdfor arbitrary d are presented in appendix A. Of course, for small values
of d andf , more extensive data can be derived and these are given in appendix B. We also
give data for the triangular lattice through ordersn = 5, 5, 4 and 4 forf = 3, 4, 5 and 6,
respectively. On puttingx = 1, these data check and extend by up to two terms the exact
enumeration data of Wilkinsonet al (1986) for thetotal number of uniformf -stars.

Using combinatorics, we now calculate the general form of the coefficients
(n)
k,` (f )

occurring in (2.2), at least for sufficiently large`-dimensional subspaces. The largest value of
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` is clearly` = f n, which occurs when each of then steps in every one of thef branches is in
a new dimension not visited by other steps. It is not difficult to see that for all such embeddings
k = 0. Hence, all thes(n)k,f n(f ) are zero except

s
(n)
0,f n(f ) =

(f n)!2f n

f !
. (2.4)

The (f n)! factor appears because thef n dimensions may be chosen in any order while the
factor 2f n arises because when a step enters a new dimension, there are two possible directions.
Thef ! factor arises from the indistinguishability of thef branches.

When anf -star is embedded iǹ= f n−1 dimensions, it simply means that two of thef n
steps are parallel or antiparallel to each other, but each of the remaining steps is directed into
a new dimension. All such distinct embeddings fall into one of the following three categories:

(1) Choose any two of thef branches, say thepth andqth. Let thesth step(1 6 s 6 n)

of thepth branch be parallel or antiparallel to thesth step of theqth branch, with the
remaining steps spanning an(f n − 2)-dimensional subspace. Two different cases must
be considered.
(i) s = 1. In this case, the first step of thepth branch must be antiparallel to the first step

of theqth branch (i.e. they lie on the same axis) and there are no contact interactions.
This contributes an amount

K1a = (f n− 1)× (f n− 2)!2f n−2 × 1

(f − 2)!
= (f n− 1)!2f n−1

2!(f − 2)!
. (2.5)

The factor(f n − 1) is the number of possible axes the antiparallel pair can lie on.
The remaining(f n − 2) steps can be embedded in(f n − 2)!2f n−2 different ways.
The(f − 2)! factor arises from the indistinguishability of the remaining branches.

(ii) s = 2, 3, . . . , n. Similar arguments to those above can be used with the difference
that the chosen pair of steps can now be parallel or antiparallel to each other. Hence,
the total contribution of these(n− 1) types is

K1b = (n− 1)× 2× (f n− 1)!2f n−1

2!(f − 2)!
. (2.6)

(2) Choose any one of thef branches. Let thesth step and thet th step be parallel or
antiparallel to each other with the remaining steps, on the chosen branch and the other
unchosen branches, being directed into different unvisited dimensions. The following
cases have to be considered.
(i) t = s + 1, i.e. thesth step is immediately followed by thet th step. As these two steps

are parallel to each other, there can be no contact interactions. Since 16 s 6 (n−1),
such embeddings contribute a total of

K2a = (n− 1)× (f n− 1)!2f n−1

(f − 1)!
. (2.7)

(ii) t = s + 2 with 16 s 6 (n−2). If thesth andt th steps are parallel to each other, there
is no contact interaction. If, on the other hand, thesth andt th steps are antiparallel,
there will be one contact. The contribution from configurations of each type is

K2b = 1

2
× (n− 2)× (f n− 1)!2f n−1

(f − 1)!
× 2. (2.8)

(iii) t = s + i with i > 2 and 16 s 6 (n−i). In this case, there are no contact interactions
whether thesth andt th steps are parallel or antiparallel to each other. For eachi, the
contribution is

(n− i)× (f n− 1)!2f n−1

(f − 1)!
× 2.
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Since 36 i 6 (n− 1), the total contribution is

K2c = [(n− 3) + (n− 4) + · · · + 2 + 1]× (f n− 1)!2f n−1

(f − 1)!
× 2

= 1

2
(n− 2)(n− 3)× (f n− 1)!2f n−1

(f − 1)!
× 2. (2.9)

(3) Finally, choose any two branches and let thesth step of one branch be parallel or antiparallel
with the(s+k)th step of the other branch, where 16 s < (s+k) 6 n. Let all the remaining
steps be directed into different unvisited dimensions. The following cases arise.
(i) k = 1; s = 1. Configurations with one contact contribute

K3a = (f n− 1)!2f n−1

(f − 2)!
(2.10)

and the same amount with no contacts.
(ii) k = 1; s = 2, 3, . . . , (n− 1). For all values ofs, the configurations are free of

contacts and contribute
(f n− 1)!2f n−1

(f − 2)!
× 2.

Sinces can take(n− 2) different values, the total contribution is

K3b = (n− 2)× (f n− 1)!2f n−1

(f − 2)!
× 2. (2.11)

(iii) k = 2, 3, . . . , (n− 1); s = 1, 2, . . . , (n− k). These configurations contribute an
amount

(n− k)× (f n− 1)!2f n−1

(f − 2)!
× 2

for each value ofk, giving a total contribution of

K3c = [(n− 2) + (n− 3) + · · · + 2 + 1]× (f n− 1)!2f n−1

(f − 2)!
× 2

= 1

2
(n− 1)(n− 2)× (f n− 1)!2f n−1

(f − 2)!
× 2. (2.12)

Summing all the contributions discussed above yields the rigorous result∑
k>0

s
(n)
k,f n−1(f )x

k = (K1a +K1b +K2a +K2b +K2c +K3a +K3b +K3c) + (K2b +K3a)x

=
[
n2 − 3

2

(f − 2)!
+
n2 − 3n + 3

(f − 1)!

]
× (f n− 1)!2f n−1

+

[
n− 2

(f − 1)!
+

1

(f − 2)!

]
x × (f n− 1)!2f n−1. (2.13)

Substituting the results in (2.4) and (2.13) into (2.2) one obtains, following some
manipulation,

Z(d)n (x; f ) = (f n)!2f n

f !

(
d

f n

)
+{[f 2n2 − 3f n− 3

2f (f − 3)] + [f n + f (f − 3)]x}

× (f n− 1)!2f n−1

f !

(
d

f n− 1

)
+ · · · . (2.14)

Unfortunately, we have been unable to derive higher-order terms in this expansion owing to
the complexity of the combinatorics. The equation is valid for self-interactingf -stars with
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f > 3 and for alln > 2, as can be confirmed numerically using appendix A. It is also true for
ISAW obtained by setting eitherf = 1 or (barring a trivial factor of 2)f = 2.

Expanding the binomial coefficients in (2.14) in inverse powers ofσ—see, for example,
Peard and Gaunt (1995), equation (2.17)—gives

Z(d)n (x; f ) = σfn

f !

{
1 +

[
−3

2
f 2 +

(
9

2
− n

)
f + [f n + f (f − 3)]x

]
σ−1 + · · ·

}
. (2.15)

Then formally taking the logarithm ofZ(d)n (x; f ), dividing by nf and lettingn→∞, as
in (1.6), we obtain the 1/σ -expansion for the limiting free energy per edge through first order,
namely

κ
(d)
f (x) = logσ + (x − 1)σ−1 + · · · . (2.16)

This expansion, which is independent off , agrees exactly through order 1/σ with the
corresponding expansion (see Nemirovskyet al (1992), equation (19)) for ISAW. This result
supports our conjecture that interacting uniformf -stars and interacting walks have the same
limiting free energy over the entire range ofβ (or x) on ad-dimensional hypercubic lattice.

Although we have been unable to derive the next term in the expansion (2.14) for arbitrary
f , we do have sufficient information to derive the next term for the case off = 3. One finds

Z(d)n (x; 3) = (3n)!23n

3!

(
d

3n

)
+ [9n(n− 1) + 3nx]

(3n− 1)!23n−1

3!

(
d

3n− 1

)
+[( 81

2 n
4 − 117n3 + 207

2 n
2 − 23n− 4) + (27n3− 45n2 + 3n + 6)x

+( 9
2n

2 + 9
2n− 3)x2]

(3n− 2)!23n−2

3!

(
d

3n− 2

)
+ · · · (2.17)

where the first two terms are obtained by settingf = 3 in (2.14). As may be confirmed from
appendix A, this expansion is correct forn = 4 and is expected to be valid for alln > 4. It
follows from (2.17) that, through second order in 1/σ ,

κ
(d)
3 (x) = logσ + (x − 1)σ−1 + [−1 + (x − 1) + 3

2(x − 1)2]σ−2 + · · · (2.18)

which is in precise agreement with equation (19) in Nemirovskyet al (1992) for ISAW. This
further supports the notion that interacting 3-stars and walks have the same limiting free energy
for all values ofβ.

Finally, it is interesting to define a two-variable model for interacting uniform-star
polymers in which one distinguishes contact interactions between monomers on the same
branch (interaction parameterβx) and between monomers on different branches (interaction
parameterβy). The partition function for such a polymer is the two-variable generalization
of (2.2), namely

Z(d)n (x, y; f ) =
f n∑
`=1

∑
k>0

∑
h>0

s
(n)
k,h,`(f )x

kyh
(
d

`

)
. (2.19)

Herex = eβx , y = eβy ands(n)k,h,`(f ) is the number off -stars withn steps in each branch,k
βx-interactions andh βy-interactions spanning aǹ-dimensional subspace.

By using similar arguments to those used in the derivation of (2.4), one can readily see
that alls(n)k,h,f n(f ) are zero unlessk = h = 0 in which case

s
(n)
0,0,f n(f ) =

(f n)!2f n

f !
. (2.20)
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We also saw thatK2b in (2.8) is the contribution from stars with oneβx-interaction, whileK3a

in (2.10) is from stars with oneβy-interaction. Thus,∑
k>0

∑
h>0

s
(n)
k,h,f n−1(f )x

kyh = (K1a +K1b +K2a +K2b +K2c +K3a +K3b +K3c)

+K2bx +K3ay

=
[
n2 − 3

2

(f − 2)!
+
n2 − 3n + 3

(f − 1)!

]
× (f n− 1)!2f n−1

+

[
n− 2

(f − 1)!
x +

1

(f − 2)!
y

]
× (f n− 1)!2f n−1 (2.21)

is the correct generalization of (2.13). Substituting (2.20) and (2.21) into (2.19) leads to

Z(d)n (x, y; f ) = (f n)!2f n

f !

(
d

f n

)
+{ [f 2n2 − 3f n− 3

2f (f − 3)] + [(f n− 2f )x + f (f − 1)y]}

× (f n− 1)!2f n−1

f !

(
d

f n− 1

)
+ · · · (2.22)

which reproduces (2.14) wheny = x. Like that equation, (2.22) is valid for allf > 1 and
n > 2.

Expanding the binomial coefficients in (2.22) in powers of 1/σ , taking the logarithm of the
partition function, dividing bynf and lettingn→∞ gives the limiting reduced free energy
as

κ
(d)
f (x, y) = logσ + (x − 1)σ−1 + · · · . (2.23)

We note that the coefficients in this expansion are independent ofy through leading order in
1/σ and that the expansion is identical to that in (2.16). This implies that the limiting free
energy is dominated by the self-interactions within each branch, at least for larged.

3. Numerical results

In a previous paper (Yuet al 1997), we estimated limiting reduced free energies from the
sequence of partition functionsZn for sizesn = 1, 2, 3, . . . . The limiting free energy has been
proved to exist for ISAP for allβ <∞ and for ISAW and ISAS-f for β 6 0. These suggest
that asymptotically

Zn(β) ∼ nγ (β)−1µ(β)n (ISAW, ISAS− f ) (3.1)

and

Zn(β) ≡ 2nZon(β) ∼ nγ (β)−1µ(β)n (ISAP) (3.2)

where the modification for ISAP maintains consistency with the definition of Duplantier (1989),
who has predicted theoretical values for the exponentγ (0). SupposeL is the number of physical
loops in a polymer network (with no interactions, i.e.β = 0) embedded in ad-dimensional
lattice, andnL is the number of vertices of functionalityL. Duplantier showed that

γ (0) = 1− νdL +
∑
L>1

nLσL (3.3)

whereν is the exponent characterizing the radius of gyration, and whend = 2,σL is given by

σL = (2− L)(9L + 2)/64 (3.4)
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Table 1. Theoretical values ofγ (0).

γ (0) ISAW ISAP ISAS-3 ISAS-4

d = 2 111
32 ≈ 1.344 − 1

2 1 1
16 ≈ 1.063 1

2
d = 3 1.18 −0.78 1.09 1.02

Figure 1. Estimates ofγ (β) for ISAW (•), ISAP (♦) and ISAS-3 (◦) on the square (SQ) and
simple cubic (SC) lattices.

while whend = 4− ε(ε > 0),

σL = ε

8

L

2
(2− L) +

(ε
8

)2 L

8
(L− 2)(8L− 21) + O(ε3). (3.5)

For ISAW, ISAP, ISAS-3 and ISAS-4, one finds the theoretical values ofγ (0) given in table 1
for dimensionsd = 2 and 3. Forβ < βc, one expects thatγ (β) = γ (0). At β = βc, a
different value for the exponent is expected; for instance, for ISAW on the hexagonal lattice,
Duplantier and Saleur (1987) have shown thatγ (βc) = 8

7 < γ (0).
From the asymptotic forms in (3.1) and (3.2), it follows that the ratiosrn ≡ Zn(β)/Zn−1(β)

behave asymptotically as

rn = µ(β)
[
1 +

γ (β)− 1

n
+ O

(
1

n2

)]
(3.6)

i.e. linearly with 1/n asn→∞. A linear fit of the last few values gives a line withµ(β) as
the intercept and slopem(β) = µ(β)[γ (β)−1]. In this way, the limiting reduced free energy,
given by

κ(β) = logµ(β) (3.7)

may be determined numerically. The above extrapolation procedures were found to work
particularly well in theβ < 0 region, but only up to relatively small values ofβ > 0. (See
figures 2–4 of Yuet al (1997).)

We now present our results for the exponentγ (β) calculated using

γ (β) = 1 +
m(β)

µ(β)
. (3.8)
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Plots ofγ (β) for ISAW, ISAP and ISAS-3 on the square and simple cubic lattices are presented
in figure 1. Plots for the triangular lattice are rather similar. Data forf > 3 are too short
to extract reasonable estimates ofγ (β). It is observed that forβ < βc (see, for example,
the estimates in (3.14) and (3.15)),γ (β) is roughly constant and consistent with Duplantier’s
predictions forγ (0) given in table 1. Aroundβ = βc, a dramatic change in behaviour occurs
with γ (β) decreasing rapidly asβ increases further. Such behaviour seems physically quite
unreasonable and raises questions about the validity of the asymptotic forms in (3.1) and (3.2)
for β > βc. Indeed there is a conjecture (Bennett-Woodet al 1994) which suggests that for
β > βc the asymptotic forms forZn in (3.1) and (3.2) should be replaced by

Zn(β) ∼ nγ (β)−1µ0(β)
nµ1(β)

nσ (3.9)

where, most likely,σ = (d − 1)/d, and µ0(β) and µ1(β) are unknown functions.
Unfortunately, because of the number of unknowns in (3.9), Bennett-Woodet al (1994, 1998)
were quite unable to estimateγ (β) for β > βc, even though they extended the series for ISAW
and ISAP on the square lattice ton = 29 andn = 42, respectively.

Not surprisingly, the limiting reduced free energies determined numerically by Yuet al
(1997) are very smooth, but approximate curves, quite unsuited to the study of the collapse
transition. For estimatingβc andφ, the heat capacity is much more useful and, as usual, we
will assume(Gaunt and Flesia 1990) that it may be calculated by defining the heat capacity of
a polymer of sizen as

Cn(β) = ∂2κn(β)

∂β2
(3.10)

where

κn(β) = n−1 logZn(β) (3.11)

and then taking then→∞ limit. We have therefore derived and analysed some exact
enumeration and Monte Carlo simulation data for the heat capacity off -stars. The simulations
employ the Multiple Markov Chain sampling method (Tesiet al 1996b) and a ‘pivot+local’
algorithm. Thus, plots ofCn againstβ (−5 < β < 5) for walks, polygons, 3-stars and 4-
stars on the square, triangular and simple cubic lattices have been made. The plots are not
reproduced here since they are not especially interesting and, in any case, are qualitatively
very similar to the corresponding plots for collapsing lattice trees (Gaunt and Flesia 1991) and
lattice animals (Flesia and Gaunt 1992). In particular, forn sufficiently large, they all exhibit
a single sharp peak of heighthn ≡ Cn,max which is expected to increase asn increases like

hn ∼ n2φ−1 n→∞. (3.12)

The location of the peak atβ = βmax(n) is identified with the collapse of the finite size polymer.
As n→∞, βmax(n) is expected to approachβc like

βmax(n) = βc +An−φ + · · · n→∞ (3.13)

whereA is a constant amplitude. The scaling analysis leading to (3.12) and (3.13) has been
given elsewhere (Gaunt and Flesia 1991, Braket al 1993) and will not be repeated here.

If the limiting free energies of interactingf -stars, self-avoiding walks and polygons are
identical for all values ofβ (see Yuet al 1997, Bennett-Woodet al 1998 and section 2 of this
paper), thenβc andφ should be the same for these three polymer architectures. Ind = 2,
recent results for ISAW and ISAP are consistent with a common location for the collapse
transition at

βc = 0.663± 0.016 (SQ) (3.14)
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Figure 2. Estimates ofφ for ISAS-3 and ISAS-4 on the square lattice. Monte Carlo (•) and exact
enumeration (◦) results.

while in d = 3 a common value around

βc = 0.277± 0.009 (SC) (3.15)

is indicated (see Bennett-Woodet al 1998, and references therein). For ISAS-3 and ISAS-4,
our series and Monte Carlo data are too limited to yield independent estimates ofβc with
comparable uncertainties. However, we can confirm that the data are consistent with the above
values.

For the cross-over exponentφ, there is the expectation that ind = 3, which is the upper
critical dimension for tricritical walks,φ will have the mean-field valueφ = 1

2. In common
with other workers (Tesiet al1996b, Grassberger and Hegger 1995a), we have simply accepted
the expected theoretical value ofφ = 1

2 and we know of no recent direct estimates for ISAW,
ISAP or ISAS-f , although our series data are not inconsistent withφ = 1

2.
Whend = 2, there is the conjecture of Duplantier and Saleur (1987) thatφ = 3

7. However,
as has been emphasized by Braket al (1993), cross-over exponents are notoriously difficult to
determine numerically and attempts to confirm this conjecture by direct numerical estimation
have been surrounded in controversy. For ISAP, the best numerical estimate is far away from
φ = 3

7 atφ = 0.90± 0.02 (Maes and Vanderzande 1990). For ISAW, a number of numerical
estimates are somewhat closer toφ = 3

7, falling as they do in the range fromφ = 0.48± 0.07
(Derrida and Saleur 1985) toφ = 0.66± 0.02 (Meirovitch and Lim 1989). Our Monte Carlo
results for ISAS-3 and ISAS-4 on the square lattice are shown in figure 2. A linear least-squares
fit of the larger values ofn gives

φ = 0.60± 0.01 (f = 3) φ = 0.58± 0.06 (f = 4) (3.16)

where the uncertainties represent the 95% confidence intervals shown in the figure. Our series
data are consistent with these values.

The estimates in (3.16) support the conjecture thatφ is independent off for f -stars. They
also lie within the range ofφ-values that we quoted for ISAW, and are therefore consistent
with the conjecture that walks and stars have a common value ofφ. Unfortunately, none
of the estimates for stars, walks or polygons are close to the theoretical value ofφ = 3

7.
However, more recent Monte Carlo work for ISAW, utilizing much larger values ofn, has
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Figure 3. Typical simulation configurations at various values ofβ for ISAS-3 withn = 30 edges
in each branch on the square lattice.

given φ = 0.430± 0.006 for the Manhattan lattice (Prellberg and Owczarek 1994) and
φ = 0.435± 0.006 for the square lattice (Grassberger and Hegger 1995b), both of which
seem to confirmφ = 3

7. Grassberger and Hegger argue that the larger values ofφ that have
been found may have resulted from the neglect of extremely large correction-to-scaling terms.
So there remains the realistic hope that, when high-quality data are available for larger values
of n, a correction-to-scaling analysis will yield estimates ofφ closer to the expected theoretical
value ofφ = 3

7.
Finally, to understand qualitatively how an interacting uniform star polymer collapses as

β increases fromβ = 0, interesting information can be obtained by using the Monte Carlo
simulations to examine typical configurations. Figure 3 shows a 3-star on the square lattice
with n = 30 in each branch changing its conformation from an expanded object to a compact
or collapsed object asβ increases. The collapse seems to occur in two stages. Whenβ = 0,
the star is expanded with relatively few intrachain interactions and even fewer interchain
interactions. Asβ increases, each branch of the star begins to collapse individually so by
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β = 0.1 there has been a large increase in the number of intrachain interactions although the
number of interchain interactions is still small. This observation suggests that the conclusion
implied by (2.23), namely that the limiting free energy is dominated by self-interactions within
each branch at least for larged, is also true for smalld. The individual chains (although quite
short) seem to exhibit the blob-and-link structure observed by Grassberger and Hegger (1995b).
At β = 0.6, just belowβc, not only has the average branch length of the star shrunk further, but
different branches have come closer together increasing significantly the number of inter-chain
contacts. Atβ = 3.0, well into the collapsed phase, the number of contacts is approaching
its maximum value and one large blob has formed which contains most of the star. A similar
process of collapse occurs whenf = 4.
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Appendix A. Partition functions Z(d)
n (x; f ) for ISAS-f with f = 3, 4, 5 and 6

A.1. f = 3

Z
(d)
1 (x; 3) = 4

(
d

2

)
+ 8

(
d

3

)
Z
(d)
2 (x; 3) = (16 + 48x + 20x2)

(
d

2

)
+ (744 + 960x + 288x2 + 16x3)

(
d

3

)
+(5248 + 3840x + 576x2)

(
d

4

)
+ (11 520 + 3840x)

(
d

5

)
+ 7680

(
d

6

)
Z
(d)
3 (x; 3) = (300 + 392x + 468x2 + 208x3 + 12x4)

(
d

2

)
+ (54 104 + 75 384x + 60 936x2

+25 840x3 + 6000x4 + 768x5)

(
d

3

)
+ (1581 760 + 1708 608x + 995 520x2

+310 144x3 + 52 608x4 + 5760x5)

(
d

4

)
+ (14 527 360 + 11 600 640x

+4704 000x2 + 956 160x3 + 82 560x4 + 3840x5)

(
d

5

)
+(56 732 160 + 31 703 040x + 8087 040x2 + 806 400x3)

(
d

6

)
+(105 692 160 + 37 094 400x + 4515 840x2)

(
d

7

)
+(92 897 280 + 15 482 880x)

(
d

8

)
+ 30 965 760

(
d

9

)
Z
(d)
4 (x; 3) = (3604 + 5600x + 7400x2 + 6088x3 + 3652x4 + 1528x5 + 292x6)

(
d

2

)
+(3548 104 + 5643 624x + 5888 760x2 + 4706 320x3 + 2650 560x4

+1118 760x5 + 375 384x6 + 121 488x7 + 18 384x8 + 3744x9)

(
d

3

)
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+(359 019 968 + 477 608 640x + 396 898 752x2 + 250 745 408x3

+112 933 056x4 + 38 962 560x5 + 10 964 928x6 + 2979 456x7

+463 488x8 + 75 648x9 + 12 288x10)

(
d

4

)
+(9511 981 440 + 10 227 281 280x + 6708 929 280x2 + 3297 354 880x3

+1128 600 960x4 + 293 410 560x5 + 62 027 520x6 + 12 349 440x7

+1148 160x8 + 111 360x9)

(
d

5

)
+ (101 525 752 320 + 87 006 965 760x

+44 450 150 400x2 + 35 703 267 840x3 + 4044 971 520x4 + 720 437 760x5

+100 277 760x6 + 11 381 760x7)

(
d

6

)
+ (540 608 517 120 + 362 266 813 440x

+139 873 950 720x2 + 37 086 013 440x3

+5819 304 960x4 + 582 220 800x5 + 39 352 320x6)

(
d

7

)
+(1600 325 959 680 + 811 442 257 920x + 223 763 742 720x2

+37 896 929 280x3 + 2869 493 760x4 + 72 253 440x5)

(
d

8

)
+(2757 346 099 200 + 998 367 068 160x + 175 854 551 040x2

+14 337 146 880x3)

(
d

9

)
+(2749 759 488 000 + 635 417 395 200x + 53 880 422 400x2)

(
d

10

)
+(1471 492 915 200 + 163 499 212 800x)

(
d

11

)
+ 326 998 425 600

(
d

12

)
A.2. f = 4

Z
(d)
1 (x; 4) =

(
d

2

)
+ 12

(
d

3

)
+ 16

(
d

4

)
Z
(d)
2 (x; 4) = (1 + 8x + 20x2 + 16x3 + 2x4)

(
d

2

)
+(672 + 2496x + 2976x2 + 1200x3 + 120x4)

(
d

3

)
+(24 352 + 52 416x + 35 136x2 + 8064x3 + 480x4)

(
d

4

)
+(210 880 + 280 320x + 107 520x2 + 11 520x3)

(
d

5

)
+(681 600 + 529 920x + 92 160x2)

(
d

6

)
+(913 920 + 322 560x)

(
d

7

)
+ 430 080

(
d

8

)
Z
(d)
3 (x; 4) = (81 + 144x + 356x2 + 368x3 + 300x4 + 48x5)

(
d

2

)
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+(189 336 + 573 696x + 826 704x2 + 769 056x3

+446 004x4 + 172 800x5 + 33 384x6 + 4896x7)

(
d

3

)
+(32 247 344 + 74 255 424x + 80 352 768x2 + 54 632 192x3

+23 236 992x4 + 6818 880x5 + 1131 072x6 + 142 848x7 + 8640x8)

(
d

4

)
+(1145 229 440 + 1231 449 600x + 1632 417 600x2 + 823 757 440x3

+255 616 320x4 + 53 779 200x5 + 6378 240x6 + 583 680x7 + 19 200x8)

(
d

5

)
+(14 800 070 400 + 24 191 481 600x + 12 198 216 960x2 + 4512 030 720x3

+979 925 760x4 + 135 129 600x5 + 9400 320x6 + 460 800x7)

(
d

6

)
+(90 648 499 200 + 75 420 831 360x + 42 022 471 680x2 + 10 870 594 560x3

+1488 614 400x4 + 108 380 160x5 + 2580 480x6)

(
d

7

)
+(299 544 698 880 + 266 080 855 040x + 72 325 693 440x2

+11 766 988 800x3 + 768 552 960x4 + 10 321 920x5)

(
d

8

)
+(564 908 359 680 + 200 521 117 440x + 60 429 680 640x2

+4675 829 760x3)

(
d

9

)
+(608 012 697 600 + 391 867 015 680x + 19 508 428 800x2)

(
d

10

)
+(347 435 827 200 + 544 993 737 600x)

(
d

11

)
+ 81 749 606 400

(
d

12

)
A.3. f = 5

Z
(d)
1 (x; 5) = 6

(
d

3

)
+ 32

(
d

4

)
+ 32

(
d

5

)
Z
(d)
2 (x; 5) = (96 + 960x + 3312x2 + 4944x3 + 3114x4 + 625x5)

(
d

3

)
+(31 872 + 152 064x + 264 864x2 + 205 184x3 + 67 632x4 + 7104x5)

(
d

4

)
+(1048 480 + 3 166 720x + 3412 800x2 + 1571 200x3 + 286 880x4

+14 208x5)

(
d

5

)
+(10 433 664 + 21 012 480x + 14 330 880x2 + 3793 920x3 + 312 960x4)

(
d

6

)
+(44 056 320 + 58 168 320x + 23 385 600x2 + 2795 520x3)

(
d

7

)
+(89 026 560 + 70 533 120x + 12 902 400x2)

(
d

8

)
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+(85 155 840 + 30 965 760x)

(
d

9

)
+ 30 965 760

(
d

10

)

A.4. f = 6

Z
(d)
1 (x; 6) =

(
d

3

)
+ 24

(
d

4

)
+ 80

(
d

5

)
+ 64

(
d

6

)
Z
(d)
2 (x; 6) = (1 + 24x + 228x2 + 1088x3 + 2718x4 + 3312x5 + 1496x6)

(
d

3

)
+(10 688 + 103 584x + 396 096x2 + 756 544x3 + 751 008x4

+359 616x5 + 62 400x6)

(
d

4

)
+(1814 800 + 10 451 040x + 23 605 120x2 + 26 364 160x3 + 14 999 040x4

+3961 280x5 + 353 280x6)

(
d

5

)
+(55 888 704 + 218 165 760x + 327 210 240x2 + 235 115 520x3

+81 701 760x4 + 11 980 800x5 + 471 040x6)

(
d

6

)
+(616 438 144 + 1 696 611 840x + 1731 340 800x2 + 799 339 520x3

+160 608 000x4 + 10 483 200x5)

(
d

7

)
+(3172 929 536 + 6139 822 080x + 4148 551 680x2 + 1135 411 200x3

+102 789 120x4)

(
d

8

)
+(8546 549 760 + 11 170 897 920x + 4551 966 720x2 + 567 705 600x3)

(
d

9

)
+(12 412 108 800 + 9 909 043 200x + 1857 945 600x2)

(
d

10

)
+(9196 830 720 + 3406 233 600x)

(
d

11

)
+ 2724 986 880

(
d

12

)

Appendix B. Partition functions Zn(x; f ) for ISAS-f with f = 3, 4, 5 and 6 on the
triangular, square and simple cubic lattices

B.1. f = 3

Triangular lattice

Z1(x; 3) = 2 + 12x + 6x2

Z2(x; 3) = 54 + 144x + 288x2 + 288x3 + 324x4 + 192x5 + 22x6

Z3(x; 3) = 1188 + 5136x + 9468x2 + 12 692x3 + 14 598x4 + 16 608x5

+15 574x6 + 10 068x7 + 6174x8 + 3216x9 + 234x10

Z4(x; 3) = 24 800 + 137 952x + 350 556x2 + 557 852x3 + 753 330x4 + 890 904x5

+956 786x6 + 895 476x7 + 800 334x8 + 641 728x9 + 431 796x10
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+244 740x11 + 149 992x12 + 59 376x13 + 8142x14

Z5(x; 3) = 588 288 + 3641 376x + 10 886 382x2 + 21 960 156x3 + 34 616 226x4

+46 380 636x5 + 55 041 392x6 + 59 417 004x7 + 58 865 532x8

+53 771 596x9 + 46 358 190x10 + 37 146 528x11 + 27 797 382x12

+18 957 288x13 + 11 613 612x14 + 6472 456x15 + 3326 190x16

+1490 304x17 + 405 506x18 + 21 708x19

Square lattice

Z1(x; 3) = 4

Z2(x; 3) = 16 + 48x + 20x2

Z3(x; 3) = 300 + 392x + 468x2 + 208x3 + 12x4

Z4(x; 3) = 3604 + 5600x + 7400x2 + 6088x3 + 3652x4 + 1528x5 + 292x6

Z5(x; 3) = 42 532 + 96 672x + 115 316x2 + 102 224x3 + 78 040x4 + 44 760x5

+17 944x6 + 5904x7 + 692x8

Z6(x; 3) = 534 496 + 1 353 256x + 1831 220x2 + 1831 112x3 + 1592 956x4

+1171 072x5 + 740 424x6 + 386 920x7 + 162 104x8 + 57 216x9

+14 404x10 + 368x11

Z7(x; 3) = 6681 352 + 18 681 272x + 30 088 516x2 + 32 964 168x3 + 29 626 364x4

+23 245 648x5 + 15 964 736x6 + 9720 160x7 + 4987 764x8

+2195 800x9 + 792 364x10 + 237 272x11 + 49 036x12 + 2056x13

Z8(x; 3) = 83 718 536 + 259 560 880x + 454 134 432x2 + 551 442 112x3 + 547 246 116x4

+470 484 464x5 + 363 559 608x6 + 251 445 792x7 + 157 245 292x8

+88 789 472x9 + 44 625 304x10 + 19 683 952x11 + 7535 320x12

+2530 920x13 + 674 604x14 + 74 304x15 + 752x16

Z9(x; 3) = 1041 176 236 + 3588 799 576x + 6796 252 052x2 + 9178 842 840x3

+9870 576 592x4 + 9011 561 928x5 + 7317 039 152x6 + 5381 580 712x7

+3611 035 872x8 + 2216 253 216x9 + 1242 947 448x10 + 632 068 360x11

+288 426 096x12 + 117 920 264x13 + 42 418 520x14 + 13 008 784x15

+3320 580x16 + 386 928x17 + 4664x18

Simple cubic lattice

Z1(x; 3) = 20

Z2(x; 3) = 792 + 1104x + 348x2 + 16x3

Z3(x; 3) = 55 004 + 75 560x + 62 340x2 + 26 464x3 + 6036x4 + 768x5

Z4(x; 3) = 3558 916 + 5660 424x + 5910 960x2 + 4724 584x3 + 2661 516x4

+1123 344x5 + 376 260x6 + 121 488x7 + 18 384x8 + 3744x9

Z5(x; 3) = 240 081 924 + 476 966 568x + 533 017 740x2 + 478 165 592x63 + 348 581 544x4

+208 251 024x5 + 104 074 904x6 + 44 993 160x7 + 16 155 852x8

+5160 712x9 + 1161 744x10 + 182 832x11 + 11 064x12
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Z6(x; 3) = 15 741 417 560 + 36 773 597 544x + 47 199 363 084x2 + 47 532 171 456x3

+40 384 978 380x4 + 29 662 886 640x5 + 19 185 018 888x6

+11 016 272 712x7 + 5685 178 944x8 + 2632 057 680x9

+1094 562 540x10 + 410 593 176x11 + 132 416 520x12

+36 401 136x13 + 7132 656x14 + 1313 008x15 + 94 104x16

B.2. f = 4

Triangular lattice

Z1(x; 4) = 12x2 + 3x3

Z2(x; 4) = 120x2 + 144x3 + 408x4 + 450x5 + 606x6 + 348x7 + 204x8

Z3(x; 4) = 6834x2 + 16 080x3 + 26 871x4 + 42 594x5 + 66 114x6 + 80 886x7

+81 624x8 + 79 746x9 + 69 492x10 + 45 180x11 + 26 214x12

+12 492x13 + 1812x14

Z4(x; 4) = 349 881x2 + 1340 550x3 + 3030 567x4 + 5202 768x5 + 8045 004x6

+11 204 400x7 + 14 110 899x8 + 16 113 498x9 + 17 264 310x10

+17 001 672x11 + 15 193 434x12 + 12 607 500x13 + 9 842 124x14

+6795 702x15 + 4093 800x16 + 2302 518x17 + 1116 612x18

+330 408x19 + 43 656x20

Z5(x; 4) = 20 722 203x2 + 99 282 390x3+278 345 472x4 + 591 516 756x5 + 1041 351 153x6

+1607 009 868x7 + 2233 356 501x8 + 2839 596 270x9 + 3357 300 360x10

+3725 181 450x11 + 3886 242 549x12 + 3830 011 002x13

+3570 218 226x14 + 3141 497 550x15 + 2612 281 962x16

+2049 883 446x17 + 1518 351 750x18 + 1054 459 248x19

+686 039 850x20 + 410 102 154x21 + 221 890 572x22 + 109 304 472x23

+47 673 828x24 + 15 552 288x25 + 2526 804x26 + 65 136x27

Square lattice

Z1(x; 4) = 1

Z2(x; 4) = 1 + 8x + 20x2 + 16x3 + 2x4

Z3(x; 4) = 81 + 144x + 356x2 + 368x3 + 300x4 + 48x5

Z4(x; 4) = 1831 + 3712x + 9112x2 + 12 080x3 + 15 268x4 + 12 944x5 + 9460x6

+4352x7 + 1498x8

Z5(x; 4) = 35 073 + 137 280x + 286 460x2 + 442 896x3 + 545 758x4 + 524 168x5

+402 756x6 + 253 464x7 + 124 212x8 + 44 504x9 + 1171x10 + 1232x11 + 6x12

Z6(x; 4) = 994 733 + 3 935 440x + 8972 504x2 + 14 678 840x3 + 19 285 608x4

+21 154 064x5 + 20 322 372x6 + 17 077 200x7 + 12 674 292x8

+8322 272x9 + 4785 320x10 + 2407 480x11 + 1008 736x12

+345 856x13 + 91 912x14 + 8440x15 + 168x16

Z7(x; 4) = 26 140 609 + 110 358 048x + 288 949 584x2 + 526 263 552x3 + 750 679 328x4
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+876 651 904x5 + 881 820 384x6 + 782 503 976x7 + 616 689 280x8

+433 424 512x9 + 269 729 000x10 + 149 539 040x11 + 73 225 472x12

+31 117 600x13 + 11 202 496x14 + 3217 712x15 + 721 248x16

+101 992x17 + 3788x18

Simple cubic lattice

Z1(x; 4) = 15

Z2(x; 4) = 675 + 2520x + 3036x2 + 1248x3 + 126x4

Z3(x; 4) = 189 579 + 574 128x + 827 772x2 + 770 160x3 + 446 904x4 + 172 944x5

+33 384x6 + 4896x7

Z4(x; 4) = 45 199 245 + 135 993 696x + 226 538 136x2 + 287 507 616x3 + 280 970 532x4

+220 013 064x5 + 142 106 076x6 + 75 925 656x7 + 34 151 154x8

+12 859 920x9 + 3 885 672x10 + 1 075 152x11

+187 860x12 + 22 560x13 + 2016x14

B.3. f = 5

Triangular lattice

Z1(x; 5) = 6x4

Z2(x; 5) = 24x4 + 24x5 + 186x6 + 228x7 + 384x8 + 312x9 + 318x10 + 48x11

Z3(x; 5) = 3348x4 + 6444x5 + 14 502x6 + 34 980x7 + 64 098x8 + 86 352x9

+123 966x10 + 159 024x11 + 161 256x12 + 153 624x13 + 136 920x14

+95 460x15 + 57 270x16 + 28 008x17 + 7998x18 + 348x19

Z4(x; 5) = 319 506x4 + 1 386 600x5 + 3813 174x6 + 8481 420x7 + 16 320 858x8

+27 595 656x9 + 41 873 820x10 + 58 778 616x11 + 76 658 784x12

+92 261 364x13 + 103 081 266x14 + 108 342 336x15 + 106 631 496x16

+97 502 448x17 + 82 466 976x18 + 65 725 176x19 + 47 990 154x20

+31 477 932x21 + 18 842 310x22 + 10 017 048x23 + 4400 508x24

+1432 872x25 + 212 994x26 + 4728x27

Simple cubic lattice

Z1(x; 5) = 6

Z2(x; 5) = 96 + 960x + 3312x2 + 4944x3 + 3114x4 + 624x5

Z3(x; 5) = 141 030 + 903 624x + 2393 844x2 + 3 990 912x3 + 4510 350x4 + 3641 808x5

+2030 172x6 + 762 480x7 + 159 306x8 + 21 216x9 + 672x10

Z4(x; 5) = 133 651 434 + 723 160 992x + 1958 676 552x2 + 3736 139 352x3

+5512 258 548x4 + 6628 835 832x5 + 667 113 180x6 + 5743 689 024x7

+4245 805 926x8 + 2729 967 120x9 + 1525 855 860x10

+732 882 480x11 + 308 729 046x12 + 109 730 256x13 + 33 511 488x14

+8527 440x15 + 1776 924x16 + 252 768x17 + 37 152x18
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B.4. f = 6

Triangular lattice

Z1(x; 6) = x6

Z2(x; 6) = x6 + 12x8 + 12x9 + 54x10 + 72x11 + 108x12 + 60x13 + 3x14

Z3(x; 6) = 322x6 + 330x7 + 1143x8 + 4142x9 + 7986x10 + 12 210x11 + 27 778x12

+43 830x13 + 54 735x14 + 77 372x15 + 96 096x16 + 89 040x17

+83 932x18 + 73 404x19 + 42 192x20 + 24 624x21 + 10 401x22

+1500x23 + 130x24

Z4(x; 6) = 46 657x6 + 199 074x7 + 612 021x8 + 1666 800x9 + 3935 994x10

+8256 840x11 + 15 594 412x12 + 27 073 578x13 + 43 544 964x14

+64 979 506x15 + 90 682 770x16 + 118 749 336x17 + 146 078 071x18

+168 491 262x19 + 183 299 793x20 + 188 125 048x21 + 180 452 973x22

+162 116 562x23 + 136 945 428x24 + 107 421 036x25 + 77 313 291x26

+51 175 456x27 + 30 804 522x28 + 16 023 696x29 + 7344 129x30

+2599 296x31 + 513 204x32 + 26 032x33

Simple cubic lattice

Z1(x; 6) = 1

Z2(x; 6) = 1 + 24x + 228x2 + 1088x3 + 2718x4 + 3312x5 + 1496x6

Z3(x; 6) = 15 625 + 180 000x + 2713 632x2 + 5570 544x4 + 8223 600x5 + 9006 456x6

+7247 376x7 + 4318 140x8 + 1740 464x9 + 481 440x10 + 59 280x11 + 1792x12
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